14-3-3ε and ζ Regulate Neurogenesis and Differentiation of Neuronal Progenitor Cells in the Developing Brain


Journal article


K. Toyo-oka, T. Wachi, Robert F Hunt, S. Baraban, S. Taya, H. Ramshaw, K. Kaibuchi, Q. Schwarz, Angel F. Lopez, A. Wynshaw-Boris
The Journal of Neuroscience, vol. 34(36), 2014, pp. 12168-12181

Semantic Scholar DOI PubMed
Cite

Cite

APA   Click to copy
Toyo-oka, K., Wachi, T., Hunt, R. F., Baraban, S., Taya, S., Ramshaw, H., … Wynshaw-Boris, A. (2014). 14-3-3ε and ζ Regulate Neurogenesis and Differentiation of Neuronal Progenitor Cells in the Developing Brain. The Journal of Neuroscience, 34(36), 12168–12181.


Chicago/Turabian   Click to copy
Toyo-oka, K., T. Wachi, Robert F Hunt, S. Baraban, S. Taya, H. Ramshaw, K. Kaibuchi, Q. Schwarz, Angel F. Lopez, and A. Wynshaw-Boris. “14-3-3ε And ζ Regulate Neurogenesis and Differentiation of Neuronal Progenitor Cells in the Developing Brain.” The Journal of Neuroscience 34, no. 36 (2014): 12168–12181.


MLA   Click to copy
Toyo-oka, K., et al. “14-3-3ε And ζ Regulate Neurogenesis and Differentiation of Neuronal Progenitor Cells in the Developing Brain.” The Journal of Neuroscience, vol. 34, no. 36, 2014, pp. 12168–81.


BibTeX   Click to copy

@article{k2014a,
  title = {14-3-3ε and ζ Regulate Neurogenesis and Differentiation of Neuronal Progenitor Cells in the Developing Brain},
  year = {2014},
  issue = {36},
  journal = {The Journal of Neuroscience},
  pages = {12168-12181},
  volume = {34},
  author = {Toyo-oka, K. and Wachi, T. and Hunt, Robert F and Baraban, S. and Taya, S. and Ramshaw, H. and Kaibuchi, K. and Schwarz, Q. and Lopez, Angel F. and Wynshaw-Boris, A.}
}

Abstract

During brain development, neural progenitor cells proliferate and differentiate into neural precursors. These neural precursors migrate along the radial glial processes and localize at their final destination in the cortex. Numerous reports have revealed that 14-3-3 proteins are involved in many neuronal activities, although their functions in neurogenesis remain unclear. Here, using 14-3-3ε/ζ double knock-out mice, we found that 14-3-3 proteins are important for proliferation and differentiation of neural progenitor cells in the cortex, resulting in neuronal migration defects and seizures. 14-3-3 deficiency resulted in the increase of δ-catenin and the decrease of β-catenin and αN-catenin. 14-3-3 proteins regulated neuronal differentiation into neurons via direct interactions with phosphorylated δ-catenin to promote F-actin formation through a catenin/Rho GTPase/Limk1/cofilin signaling pathway. Conversely, neuronal migration defects seen in the double knock-out mice were restored by phosphomimic Ndel1 mutants, but not δ-catenin. Our findings provide new evidence that 14-3-3 proteins play important roles in neurogenesis and neuronal migration via the regulation of distinct signaling cascades.





Follow this website


You need to create an Owlstown account to follow this website.


Sign up

Already an Owlstown member?

Log in